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0.- FOREWORD

The work done during the period covered by the present FINAL Scientific
Report pertains to several topics related to the application of functio-
nal analysis in fluid-mechanics.

It has lead to the following papers :

1.- L.G. NAPOLITANO :"Functional Analysis Approach for the Derivation
of Hybrid Variational Functionals".

This paper was presented at the IUTAM/IUM Symposium on Applications
of Methods of Fumctional Analysis to Problems of Mechanics held in
Marseille, France, on September 1975.

The Proceedings have already been published by Springer Verlag. The
complete reference is :

“Applications of Methods of Functional Analysis to Problems in Mechanics"
Edited by P. Germain and B. Nayroles; Lecture Notes in Mathematics, no.
503 , Springer-Verlag, Berlin - Heidelberg - New York, 1976.

In the paper acknowledgment to AFOSR sponsorship was incorrectly stated
as pertaining to Grant No. AFOSR 74-2704. The correct statement should
have been Grant No. AFOSR-76-2889.

2.- L.G., NAPOLITANO :"The functional inverse approach for the variational
formulation of boundary value problems".

This paper was presented at the Congress on Modern Problems in Continuum
Mechanics held in Turin (Italy) on November 1975.




The proceedings of this Meeting are in press.

3.- L.G. NAPOLITANO :"Functional Analysis Derivation of Hybrid Variational
Functionals for Fourth Order Elliptical Operators".

This paper was presented at the Second International Symposium on Finite
Elements Methods in Flow Problems held in S. Margherita Ligure (Italy)
on June 1976.

The Preprints of the Symposium have been published already and copy of
them can be obtained from ICCAD (International Centre for Computer Ai-
ded Design) Genava (Italy).

4.- L.G. NAPOLITANO and V. LOSITO :"The Closed Spline Functions".

This paper will be submitted for publication to an International Journ:!

Since papers No. 1 and 3 above are readily available (and an appropriate
number of copies have already been forwarded to the Sponsoring Agency) b
the subject Final Report will contain, in extenso, only the papers No.

Z and 4 above which constitute Parts I and II respectively of the Repoit
itself.
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THE FUNCTIONAL INVERSE APPROACH FOR THE VARIATIONAL
FORMULATION OF BOUNDARY VALUE PROBLEMS

by
L. G. Napolitano
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THE FUNCTIONAL INVERSE APPROACH FOR THE VARIATIOWAL
FORMULATION OF BOUNDARY VALUE PROBLEMS (°)

by

L.G. Napolitano

1. INIRODUCTION

The present author has developed a functional approach for the unified
derivation of hybrid and/or classical variational formulations of boun-

dary value problems ’:1 ], [:2 ], [3]1_:1] %

This approach,referred to as the " direct approach”, considers as aiven

a formally self-adjoint linear boundary value problem and derives its dif-
ferent va;iational formulation from the stationarv proverties of a two-
field functional defined over two suitably defined linear varieties. Thc
¢irect approach hinges on an assumed factorization of the differential gne-
rator defining the boundary value problem and, ultimately, on the corre-
sponding Gauss-formula.

A more powerful and qeneral approach, to be referred to as "inverse apnroach”,
will be presented here.

In dealing with a general variational theory of boundary value problems Licne
and Magenes [Sl'have already pointed out the connection existing, via an
underlying Gauss formula, between the classes of problems that can be analy-
sed and the assumed definition of an inner product.

The contention here is that)ultimately and more generally, the connection

(°) Paper presented at the Congress on Modern Problems in Continuum
Mechanics, Torino, 1975
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is to be established between an abstract Gauss formula and classes of hgundarv
value problems. The inverse apnroach both accomplishes these tasks and
duely exploits its results.

The starting point is an abstract Gauss formula and the end results are varia-

tional formulations (derived by the method developed in the direct approach)
of the classes of boundary value problems that can be “associated" to the given
Gauss formula.

As it will be shown, an abstract Gauss formula involves essentially two Hilbert
spaces of elements " and Tdefined over a domain J2, a differential operator (>
such that 4G Ufis a subset of {Zf a number of boundary spaces defined over parti-
tions of thg boundary of JLand a set of principal and boundary operators.

The "degrees of freedom" it affords thus pertain not only to the choice of the
definition of inner products but also to the very same chcices of the elements Lj;?
of the operator G and of their tensorial orders.

The power and generality of the inverse approach stems from the unified deriva-
tion of variational formulations for the wide classes of boundary value probiems
resulting from such diversified choices.

The inverse approach presented in this paper is a natural outcome of thé di-
rect approach previously developed by the author. It thus makes uses of many
results already established in previous works to which reference is made for
greater details and/or for pertinent discussion of the significance of the
main assumption which underlies its development.




2.- FUNDAMENTALS OF THE INVERSE APPROACH

2.1 - The abstract Gauss formula

Letﬂ be an open bounded subset ofR—vnth sufficiently smooth boundary DIl
and let mrbp 52 (and'& (") m) be (m >1) arbitrary
partitions, not necessarﬂy all d1st1nct of DJ2.

Let V L‘R) C K (JZ) be two appropriate subsets of the real
Hilbert space ZL(JZthere the real function U & l/ can be of any
tensorial order, and G be a differential operator of order m and arbitrary
tensorial order. Assume that there is a Gauss s formula of the type :

(T e ) /ZF (PUN ) (2.1

where G U/ o & M/ (*)Zja subset of the Z (@épace appropriate to
their common tensorial order - < , > and C , D denote inner pro-
ducts m Z/ and V/ , respectively, 6*is the formal adjoint of G and
the ﬁ 4 are bilinear symmetrical forms onq?wmch characterize the set
of (m) "principal" (resp. "natural") boundary differential operators

P/‘ (resp. 2) of order (j - 1) [resp. me-jJ

The conditions on@J2 and its partitions necessary for the (formal) vali-
dity of the Gauss'formula are assumed to hold[5 ]

}
The nature of the elemerts U and & (and thus of the operator G) and
the inner products < , > and A )[and thus of the sets of boundary diffe-
rential operators]are left "unspecified".

(
P 0’2

Denotmg by L/F.and ?n the restrictions of ?to\/énd ’3 -ﬂ, respecti-

vely, and let : / ‘/

) /
:[:&"L * ﬂ.:/b‘éU
/ !fl’lf;,)z ¢ / / Andn
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Then the Gauss formula ( 2, ) can be rewritten as :

LT P B G EL oo (D)

The thus fas arbitrary element T & [(/ {JZ, ) is now restricted
to the subset defined by

g lcediiileicri v st s

3 {6“6 L/,/V‘Z)/G*‘T: O, Noly o7 ‘/“._g

A

Lo
(> Y and O will be referred)fr(é;pectivewju as the compatible (or
constitutive) and non-compatible parts of 27 .

The subset < C [// (JZ)/ supposed non-empty [SeeL.fJ for relevant examp]esJ
is orthogonal to the subset {Gv’} orthogonality being understcod with
respect to the inner product < , > .

On account of this, for <, C ‘e [[’2, the Gauss formula (2.Q) yields J
with G*¥G¥:=A ¢ K'(W) , He olual # e
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BT DT, O (el k )= é/g(/?? NZ)‘iﬁn{PU//ﬂ/ (2.4,

In principle, the inner product < O, Q3 > could be further decomposed,
= by relating it to the inner product pertaining to still another space
; and to other bilinear forms. This development is not to be pursued here.

It will only be supposed that there is an element “Z , belonging to the
cartesian product space Ht C Zé{ﬂ)@ ZZ(F‘)JZ) , appropriate

to the tensorial order of 6; which determines T € 2 via a pertinent
boundary value problem.

The elements A, P, 72 and T will be interpreted as “generalized" con-
straints imposed on the element & of /fé and it will be assumed
that a given set of values for the generalized constraints characterizes
a unique element € 12:L (fv&l,) as formalized in the next
paragraphs.

’2_ 2 Constraint and solutions spaces.

S S

Define :

¢ wbdyp e d - (23)

as a "constraint element". Its components will be referred to, respective-
ly, as source, principal boundary, natural boundary and constitutive

(or compatibility) constraints. Thus they prescribe, in the order,

the source (s) in JL of an element 2 , its (m) principal boundary

values P- (143 ¢m) on the (m) non necessarily coincident subsets(afa.;rl
of IR ; its (m) natural boundary vilues 1;on the (m) comp]ementar§7
subsets "Cx+ 2 , and, finally, the value (r) characterizing its"non- 1
compatible" part O ]




[t is assumed that there exist suitable spaces D5j BP/ Rn and Hz X
closed with respect to appropriate norms, such that if

£-D© B® B.® He

then for any C €& ‘C) (i.e. any 5(:’“)45/ PéBF/ ne B’)L/‘Cé/‘/é)
the linear mapping F : %?">'122,(JZ) is one to one; continuous and

bounded.[ > 1[4 ].

The space 2;) will be called the constraint space and its (closed)

F-imge H=F(®JC U2 (2 )  will be calied the "solution

space”. F is an isomorphism between the constraint space 2§>and the solution

space H .

The hypothesis on F is related to the existence and uniqueness of the so-
lution of the following four linear boundary value problems :

1) g JZ=> e
D) e
rej/‘LJ?_,‘O '
(2.6)
2. 616 pED
PU = ] '=->Z Zr:p
J [(}'/;’52‘ }; - /n l




. = _L) . — Z%Zj~72
Pd?f/u{;JZ (144 ¢m)

) = S
I\/JGU)(,:”‘/'I)Z /

4 R o= & f_, Ro-=

A [—f,/ ZZ _7

the operators éi Z}z [;1//{ being appropriate restrictions of F‘-/. The
fqurth boundary value problem involves the differential operators R

(én JZL ) af order m, and B (on DSL) which are left unspecified sin-

ce they depend on the unspecified nature of Z and G. Notice, furthermore,
that upon (2,3) :

- s
& Tl T

=5 )
whereas, in general (see [ 4] ) R G # R = since RG is not neces-
sarily the null operator.

The ranges of the above defined operators are the following subsets of
the constraint space :

R(S) = 2 oL av, ns)o ']f z C; oo
{R (/.Zn) > {Cn: [0/ g ‘J; 2 Cn C ?‘(:

B g
1 (R) 'ibz'éo/c/‘/z]j <

M




when accounting for the fact that F‘L 20 <=>k =0.

The inner product among elements of each one of the four basic subspaces
reduces to only one of the four contributions contained in the Gauss
formula. Thus, alternatively and equivalently, the basic subspaces could
have been introduced directly by imposing such a requirement of the
Gauss'formula.

3 The associated boundary value problem for compatible elements.

The general set up established in the previous paragraphs leads to a) the
definition of a boundary value problems for compatible elements, associated
with the given Gauss'formula; b) the possibility of deducing classes of
variational formulations of this boundary value problem.

By definition, a compatible element & = FTC? is uniquely characteri-
zed by a constraint element ¢ of the type :

c =l A p, n, e (2 o}

The element z can thus be interpreted as the (generalized) solution
of the following boundary value problem :

C*6 v =3
ot R (2.41)
2 /Lrj'«? [d (1egcm)
61 =n."
,\If oy Z();{/'L‘;z J




iy
whereX denotes the set generated by G,The notation n(s) is meant to
indicate that for problem (1) the values of ﬂé;é;lfbn 0, . L are uniquely

determined once s is given. /

The corresponding domains are (closed) subspaces of the solution space
referred to as basic subspaces and denoted by :

Xim B Ao = Bl Ko ilE )i ) G5

The isomorphism F makes it possible to define a pseudo-dimensionality
(psd) for subspaces of H as the number of constraints (i.e. number of
components of the constraint element) which can be given, independently,
arbitrary values. Thus psd H = 4, any of the basic subspaces has psd = 1
and any fixed element =~ & f/ has psd = 0,2 J.

The solution space H has the direct sum decomposition ;
f{ = »Yﬁ 09'/X%,(:> )Kn <t> ACZ

the basic subspaces being mutually orthogonal.

Given the property of H, the only thing which needs to be proven is the
orthogonality of the basic subspaces. This follows readily from the de-
finitions (2. ES) of the subspaces and from the Gauss formula(Z.4 ) rewrit-
ten as to exhibit explicitely the components of the constraint element (2.5):

(v:w—ff,(wz’)-&(?w &,
2.9)
Cr Tiy s X Fr FE' S # Sk

(1) - Eplp, VD)6 (PV) )
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The element Z of the vector space H will be referred to as the solution
vector and the values S/ = n of the source, principal and natural
boundary constraints will be referred to as the constraints "of" the

solution vector E

4 Linear varieties and two-field var»ia}jgna] functional -

Let Lf X S'fp be two arbitrary closed subspaces of /*'Efa(, y[a
. / S P =y .

their orthogonal complements and ‘Jg ,‘J‘g 3 GQIAL_)’s the corresponding
SEN b niees Wl s

projection operators (e.g. #ﬁx = Jﬂx H ; :f« = 3, .

Er 5= 5
Denote by Zﬁ(} 173 the linear varieties obtained by translating tﬁ% and é&%
by Z

/ ')g.xé///?foc:?“ryq/'jzé‘y;"}

X /&

/']/" P ,g_,é///?s__,z.‘fy 7 5/ © \] -{
’ Z( & f t‘v/% = IR /5
Since ?_,,( 2%: P,X 2:, the projection on L—f,x of any element T, ¢ Z;,
satisfies the same constraints as the corresponding projection of the
solution vector = . Similarly for the elements :B = Z&% . The elements

of the varieties can thus be loosely characterized as satisfying a cer-
tain set (in particular null if V:=H) of constraints of the so1ution132],(9_]

i

Pefine the two-field variatiomt~functibral +

|
|
|
|
{
]




Define the two-field variational functional :

Z" -
fz‘}({?«/-[,g); ?[5>‘<Z-cp> +<Z> (C> 2<Z éﬁ/

el s Tl (2t )

~—

As proven in [ 3.7this functional attains a stationary value for Z;TZEZ¥
and iqg - iassuch that :

L

1

This functional will be used to obtain, via the Gauss formula, different
classes of variational problems equivalent to the boundary value problem(Z.//)

3.- VARIATIONAL FUMNCTIONALS

The Gauss's formula (2.8) is used to express the two-field variational
functional (Z, )7 ) in terms of the components of the constraint vector €.

By recalling that 2 = G U = F(=,p,7,01
and by letting :

T 56 iy it Ty 5 Edip bt Swgfys w627

with a similar notation for ??;/ it is readily shown that :
i S0 R e
I (?.,, ﬁ)—l B R, tx

(ZTB (FP Mt) (Pv,;,, o2 8 1)

C.Z}‘/ 3{3) & 6//0 (F;/N?P)- f”n (Pb_; 72/3) &gg)




and, by further developing < Zﬂ/ CuP-

o
Kt ?f): Tl ey Tplfq>r
\ 2 2

> g R B, PO Pl j;’
pr,é*a) -@L;;,N(z-m]-éu 7, 2 )

(G2, 500 -G F L, V5T [P0, p] )

Each one of the above four expressions leads to possible forms of one or two-

field variational functionals which include, as it will be seen shortly, the
classical primal and dual one field functionals. In each case there is a minimum
number of requirements to be imposed on the varietieszgandzjin order to eli-
minate, as obviously needed, the terms containing unknown quantities related to
the solution element{_— i.e. quantities other than the components of the given
constraint e1ement5]. Such terms underlined in equations (?I);',»canq e elimina-
ted only by acting on the component of the constraint elements L;( and (-F
defining the linear varieties.

Since ?f\ and ?,};are subspaces translated by &, the components ofg‘and/or CP to
be acted upon must be set equal to the correspondinn components of . This
automatically, identifies also the subspaces 3‘,\/ E{P and, upon eauation @ )5))
the variety Zf characterizinq the eventual arbitrariness in Z, . Other requi-
rements can ogviously be added to further restrict the varieties 0: and Z)/;

In equation ( 3 ; ) the minimum requirement criterion is satisfied if one takes
r’,’ = |p for then the e contribution becomes constant and thus irrelevant.

¥

|
Hence Z: H-} }{* = H and (with obvious notations)




<0 -

- F'Z/-SP//;’ nf’/ ‘(P]f

—
v \

¥

]

P Fg[sp’ﬁ’nﬁz93]}‘}?[5>E/5l5]‘

{4 n, ] K@ KNON,

| Thus : (Lﬁ,( N Ej’; = $A/' Zp= Z, no indeterminacy in Z,B exists and
3 the functional reads

)

;K o <.Z>.:_<2’3,Z> r(U‘P,S)'-/“(PUI';/;) (%.,a' )

> ity ORI S W W P'L‘. /,. 5 o, - /< 57’4)
Codnion proPL, Titp AL )/, (754
This is the most general two-field hybrid functional that can be obtained
since " is an arbitrary (i.e. unconstrained) element of H and Zf is

k =
subject only to the principal constraints on ‘)[1 Ol
4
A similar procedure applied to equation ( 3.2 ) yields :
20 A w R L :
/\’s = N ) h—,}— 77 ) L,\/ - ‘f'x /4
1nd — -
& » / = X, (r
Jﬁ;:XFQ,Xt g Lﬁ -l FQ/K;
3
and the variational functional reads : 1
- I vk
;K:6'““&“‘”#/”“?0”/“‘/*) (=a)
’. — 3 e ~—
. A e e S N = -
LT 'L// ; /3 / / /%/r()u‘z /
3 ;" |
No indeterminacy in Z_ exists. One of the elements is still completely ]
,
unconstrained, the otﬁ;r satisfies the source and the natural boundary

constraints only.




When considering the other two general exoressions for K (Zy

%é) the term

P ; )may be made to disappear since otherw1se essent1a1lv fa]]s back into the
cases already dealt with.

Accordingly, the minimum criterion applied to equation (

F-P

G_B—Q

-
)

and the

%

are imposed on Jﬁ

4 Wp /crnﬂ
/4

(‘/ < J’ & M)

This is a quite general two-fields hybrid functional since, once again, no
constraints are imposes on Z

zfﬁ-zﬁ(@.n
variationa] functional reads :

)K:—-' L& & *LVp K-4 )r( U;,/VZ',,()- Z/Q(Pf
= B

leads to :
w—%)
(3.7)

and only the principal boundary constraints

Compared w1th the functional (3.5 ), GL is disapneared but

the source constraints of ;Z; appears explicitely. If the restriction -5 5)

imposed on 2’_<
L E
_‘ & L

, the term (

AE NG,

) disappears and :

{Z

.f = é; 14 Ai;

The indeterminacy in Z,is however irrelevant since as said, K would not con-

tain any volume integral of’ZB

. The element Z

—~

can be made to disappear

all together by further imposing the natural boundary constraint to the ele-

ments Z;.

I3
.
K -
2

A
)

-
0

“rbp (PN

o

) ’ J
v nj 2

-

7’ -

%

The single field functional thus obtained is nothing but the classi-
cal "dual" variational functional K




T ———

From the last expression ( ;&,9 ) one finally gets :

X ~ St =N
L ; /Sﬁ = A ) nﬁ
2..

J|

0y

I

IR Xi{ £ 273 - * X},(ﬁ) A<z

l/.x
and the variational functional reads : A i —]
2 ol T g & £ P 9

(=4 <6023 (%,5) (P -k, Nep]th Py
] - : 3.8)

e o =¥ €L < M ¢ =

,\{7 (ﬁ’/‘u.'JZ J </ 4 /
/ 2
No constraint is imposed on li:and the indeterminacy in 27315 once again
irrelevant. As before, 2?; can be made to disappear by imposing the prin-
cipal boundary constc?igps on Lﬁk . The single field functional thus
v

obtained is nothing Beth the classical "primal" variational functional F<?>
for the boundary value problem (2,//) : :

|' KF : 3'_ 2 & wN (e 3 ) o s, 7 ) :}{P/’L’D}j

Z! | > (1€} ¢n) £
7’ Z._ = F - /—' i_ o
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/. GENERAL I ZATIONS

The classes of variational functionals can be £@#Pther widened by further
decomposing the subspaces )(P and )(,L . The argument will be developed
in detail only for X,;. The constraint element corresponding to X;is :

CF = [CD/ /-'7/ CD (:"]
Let~I-be the index set [1,2,. : ,m_JCZAnd ];aany partition of J anrd .{
put p = p, + p, with Pa_:LF,y'] Jérand)’)—l_/’] /C

/4

The restriction of < , > to ,X}) will be written as :

Coals ¢ '_\. [ = + : e . e~ -
16 T4 \I}/“(l‘/’ NJ % 2.' P(/;’ AJ 5 )

G (r Ner )+ B (B, My )

Each contribution on the right hand side can be interpreted as the restric-

(4.1)

tion of the inner product to two orthogonal complementary subspaces X
: Fa
and X}‘ defined by :
h

g lze ikl 5/’05-2 . e .TQ'/ ;; VLO/‘ e L,j

¢

y b, ' Dp-
fb f,;JZ r,/z

rJ
b S

Indeed, the corresponding constraint elements read :

L}q,: [cz Ps, f[> ey b ]
& “—‘(‘_'/Rq“’b) rF;, /6)0‘/

, _'b




¥ c‘/,eC

being unique when the usual assumption upon the existence and uniqueness

so that  Cp 3 Lf’x 4 Cf’b / [ , the decomposition

of the solution of the boundary value problem corresponding to X, <4 Vnti‘AQ :

Fe

Hence :

XFG'L@ XF_;,

and the orthogonality follows from equations (4./) and (4.,2) . Notice
that for any T & X/g it is ’\’d' GU=c (J & Ia_)on the entire bounda-
ry ‘v O since for any Te XF itis MZT/)in = 7= O. Either subspa-
ce ’KP or X}; can be further decomposed with the same procedure but

such a deve]opment will be omitted.

Consider now the functional K ( Zd/ ?ﬁ ) and weaken the constraints

~on the variety qu by letting :
Z'B*YPL ZfJ.,T]’f/a"Z/*Lc{/a

where € is an arb1trary but fixed element of H.

Hence 34pis translated by an element r, whose projection on gé(is no

Tonger equal to that of the solution element but quite arbitrary. It is

readily shown that the stationary, properties mentioned in paragraph :
(2,4) still hold with 'U;r the translate of , A Ejﬁ by ¢, instead of C. i

As a consequence of this new definition of'Lgone has "more freedom" in

the process of elimination of the underlined terms from equations (3 | ):f(f3,?].
Indeed one can set the components of the constraint element ﬂacorrespon-

ding to the projection fb equal to some fixed Aut otherwise arbitra-

ry value. As this can be done only when ‘fj + 9/ y 58y %1 # # , one rea-

dily sees that the suggested procedure amounts to "shift" a constraint

from f‘!f;to 7,:




w BB -

Thus, for instance, one can eliminate the underlined term from equation
( 3.1 ) by setting :

— oy
@Q-PQ’ / EBb Fbo
with ficiarbitrary but fixed. The variational formulation is equivalent to

the original boundary value problem if one restricts %; to the subset
satisfying the principal boundary conditions rﬁ

Hence the new variational formulation reads :

K= 4<% >-<%p, 8>+, 5)‘&1(%;/’7)r
| v o ey
ZT;'W/LP 2 /aa )€ ‘o/?d F/upng} b 7

Comparison with equations (3.5) shows that the pr\nc1pa1 boundary constraint
has been split into (FQLT"7 and the part f> has been "shifted" from the ele-

o~

to the elements Cd

~
ments <

P

Similar developments can be applied to the other three exoressions (3.2),
( A3}, (3 &) and/or for the natural boundary constraints to obtain correspon-
ding new sets of variational functionals.

CONCLUDING REMARKS

The inverse approach developed here makes it possible to unitarely derive hybrid
and/or primal and dual variational formulations of classes of boundary value
problemgby starting from general explicit expressions for Gauss'formulae. The
"deqgrees of freedom" are essentially constituted by the different "physical




nature” of the elements Z (e.q. symmetric second order tensors, general second
order tensors, higher order tensors, and so on), by the definition of the inne:
product (which, amonq other things, characterizes the set of nrincipal and na-
tural boundary differential operators and hence the types of boundary conditions
that can be analysed) and by the selection of the "constitutive" part GU of 7
(which, for second and higher order tensors, can be done in more than one way)

Changing any one of the above "degrees of freedom" leads to different classes
of boundary value problems.
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THE CLOSED SPLINE FUNCTIONS

by
Luigi G. Napolitano - V. Losito

1.- INTRODUCTION

The interpolation problem solved by the classical spline functions is well
known [1 ] ;

Given (n) points (ti)
a<t‘_<t2'.........<tm<L
in the closed interval [a, b] and (n) real numbers (ri) the interpolating

spline-function of order q<£n corresponding to the (n) points (ti) is
the only function 6“’[&«,@ which solves the following minimization problem :

mj H“’)(t)]ﬁw
«?(tc): »;

q
where H [@,g] is the Hilbert space of real functions, defined on [ 5 bj
having a square-integrable g-th derivative. The space HY quantifies the notion
of "degree of smoothness" of the interpolation curve. For g = n the interpola-
ting spline reduces to the unique polynomial of degree (n) passing through the

points —%(t;) =h,

The interpolating spline belongs to the subspace SGH of real functions s(t)

a) Airfoil




K 7 Y oy o O L0 s ..,

IR e %

b) Spline-scheme

defined on [3, q] and such that[-i] ;

a) s is a polynomial of degree (2q - 1) in each of the open intervals
(1€ien-1)

b) s is a polynomial of degree (q - 1) inEl,f;[ anq]fob, g}
c) s(2a - 2) is continuous on [a 2 é]

[n many aerospace problems it is necessary to find interpolating functions
for "airfoils", i.e. for closed curves. This interpolation problem is often
solved by using the classical spline function with ¥ = tw» (see figure).
Such a procedure is unsatisfactory for two reasons. Firstly, the discontinui-
ties introduced at the airfoil point (usually, the trailing edge) correspon-
ding to the vaiues‘tiand‘t“are not those proper of the airfoil (if any).
Indeed the classical spline of order q yields different and uniquely defi-
ned values for the first (q - 1) derivatives at the points t = tyand t = t .

Secondly, upon the property b) of the spline functions, all derivatives from
order g to 2 (q - 1) of the interpolating function will vanish at the point P.
This expecially for low values of q, much to restrictive in practical applica
tions.

In principle, this approach could be improved upon by imposing a number of addi-
tional requirements at the points t = t] and t = t, to better approximate the
shape of the airfoil at the points P. Not much could however be said about the
properties (such as existence, uniqueness, extremality, and so on) of the re-
sulting classes of interpolating functions.

i —
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A completely different approach is advocated here. Rather than first assuming
that the points t; belong to an interva][a,b] and then, somehow accounting f
the fact that botht:tland t=twcorrespond to a same point of the curve t¢
approximated, the points ( t;
to an (arbitrary) closed contour C.

) are right from the beqinning supposed to oe

By thus doing each ticorresponds to one and only one point of the curve to b«
approximated and the interpolating problem for closed curves is conseauently
cost into its more natural formulation.

n the present paper it will be shown that the interpolation oroblem thus 1
lated is amenable to rigorous analysis and leads to a new class of spline-fu
tions defined on a closed contour C.

In wanting of a better terminology, they will be referred to as "cioscc
functions” since they yield interpolating functions for closed curves.

Hilbert space theory of spline-functions will be used. Basic results needed
recalled in paraqraph (2). Existence, uniqueness and characterization of the
closed spline functions are established in paraqraph (3).

These results are restated in conventional (i.e. non abstract spnace) notation
in paraqraph (4) where additional relevant properties (followinq from the ba<:
abstract theory) are also qgiven. A final paragraph offers few comments on the
other classes of closed-spline functions which can be constructed by the same

approach.
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2. - THE ABSTRACT SPLINE FUNCTION THEORY -

The needed basic results of the Hilbert space formulation of spline-function
theory are summarized here for ready and convenient reference {See[ﬁ]for
greater deta1ls}

Let X,Y,2 be three real Hilbert spaces with norms
and T :X-» )’l A X—>2Z two linear continuous
operators, which, without any loss of generality are supposed to be ogt

Given any fixed zez » define the set, supposed non empty:

IZ={16X/A7C=Z/{ (2.1)

and consider the following minimum problem :

HT"”)’ xe ] HTx/Y (2.2)

2

The element G € J-z c X , if it exists, is called the interpolating spline
corresponding to ( T, A; Z ).

The following existence and uniqueness theorem holds. Wearem ¥ (Existence).

Thecrem 1

"The solution of problem (2.2) exists for any & €1Z ife N(T) + N (A) is
closed in X and is unique iff, in addition, N(T) AN(A) =0} ".

Here N(B) denotes the null space of the operator B.

s




The definition of the space S of spline-functions follows from the characteriza-
tion stated in :

Theorem 2 :

"Under the hypothesis of Theorem 1, G € l1 is the interpolating spline cor-
responding to (TIA,'E ) iff

< T, Tx> =0 vy xe N(A)=1,

Here < .Y denotes the inner product in Y . Similar notation will be adop-
ted for the inner productsa.

The space S s the subspace of X defined by :
5:%/.)6)( / <T4,Tx>y=0 S ¥xe N(A)} (2.3)
Theorem 1 can be formulated (and generalized) in S as :

Theorem 3

"For any &€& z there exists a unique element Gés such that A(o)= - G

The extremal properties of interpolating spline are condensed in the following
theorem.

Theorem 4

If z is an arbitrary fixed element of Z and G is the unique element of S such
that A (& ) = z then :
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a)

| T(e- 0], = min [T (a2

veel,
and any other & ¢ E; having this property belongs to the set

%g}: o+ N(T)

b) "T(G“’)"y A m ”T(x-é)“y (2.5)

and G is the unique element of.Ié having this property.

Further discussion will be limited to the case of more specific interest here,
in which the number of interpolating constraints is finite.

The space Z is consequently finite and, upon theorem 1, existence is automati-
cally guaranteed whereas uniqueness requires that N(T) be also finite.

a0
Suppose then that Z € R ,with the usual inner product, and that N(T) is of
dimension q. Then : a) the operator A can be expressed as :

~n
A1=[4 Ki,x>x PERETRIE ¢ Km,x>,:]€ ;2 (2.6)

where the K‘-"s are n independent, linear continuous functional on X; b) the set
can be written as :

— . ,\/
I¥= l,czix&)(/< K;/x,)x-'-’t(_' ) 4-‘*5”1}}7.={’5¢,'Lz.-,'6~)ég
c) the following characterization theorem holds :

Theorem 5 :

A 6‘&1; is the interpolating spline-function corresponding to (T, K, ¥ )
iff there exist (n) coefficients A" such that :

TTe ".ﬂé K "[”(T)]J (2.7)

L=




J
\
Here T is the adjoint of T and[ ] denotes the orthogonal subspace.

The different classes of spline functions that can be obtained from the above
abstract formulation depends on the choices of X,Y , T and K; .

A particular instance is developed in the next paragraph.
3 - The closed spline-functions - Existence, uniqueness and characterization

Let C be a closed contour, sufficiently smooth and regular for the validity of
all properties that will be used.

Take X = Hq (C) and Y = H°(C) with their standard inner product.

Denote by & the curvilinear coordinate along C measured from an arbitrary
initial point P, and normalized with respect to the length £ of C.

Thus 0¢8¢1 and 2 (6 )< o ;&(f)-1"

0 (9)
As operator TiXe Hq(c)‘P Y" H (C) take ol where (d) stands for the

derivative with respect to @ . Clearly T is linear and continuous.
- 9
Finally, for zcR the (n) functionals K;: H (C)-DQ be defined by :
(K‘;/‘I’>H'1 =z(?)=1; {€lLem (3.1)

with

0= < ¢..... <%, <1
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The null spaces of the operators A and T are then given by :

N(A)= Io"{le H1(C)/ Cké,z)Hg =xCT;)= 0, 45&5«}
~(T)=gxen"(c)/x"l o}a{LeHQ(C)/.mwff i

Hence their dimensions are equal to (n) and to one, respectively, and

N(T)n N(R) = {Oj provided n>1 .

The minimum problem (2.2) reads : 9
j[ﬁ'((ig)]zdz- = j[x(ﬂzt)] dz
) zel,

¢ (3.3)

I,f{xe H"(C) /(kc,x)H,, = X{%‘;)zt‘:ég} 4eisni}

M
= ('c",....,tm)é R
and, according to theorem 1, it has a unique solution, for any r, as lonq as

)

The existence and uniqueness of’G(zj having been established, the next basic
task is to characterize it.

Upon the definition of adjoint, theorem 5 and equations (2.7), (3.1) one
has, subsequently :

a9
<dq0') dq:(.>H° = < (d ) olG”,x >”9= (3.4)

=< ?’. £ Kijx>yq = % Gx(x)  vaelle)

(A




- 25 -

4
n

-k, e [¥(T)]
Always upon theorem 5, Z‘ '<L Ki é[ ( )

so that the coefficients ,(\. st Be cuch-that =

m
<:lZE_,<L ki‘,Jc<;7” =0 g é’A/Cﬁr)

Now, as seen, oLm N(T) i so that always upon equation (3. 2) it
suffices to impose that 2 £ K be H9 orthogonal to umty
On account of eq. (3.1) this leads to

2 A, =0 (3.5)

as the only homogeneous condition to be satisfied by the /< [Th‘ts is to be
contrasted with the situation of classical spline - functions for wh1ch the
coefficients /( must satisfy the (q) homogeneous conditions Z/( '3— =0

(0= k= g- i)_] o

In order to characterize G or, equivalently, to obtain the additional con-
ditions which defines the X 4 uniquely one must express the rightmost term
in equation (3.4) as a scalar product in H°(C) valid for any X € H’(C)

A Mac-Laurin development of )(.{'5) with the rest expressed in intergral forms
yields : -4

el
x(%;)exle) e 2 B E LR 4 ff———%—)ﬁ (':)dg

where




e

Thus, on account of eq. (3.5) :

m =1 e
Z A *('ﬁ')-‘-E [ 2 '("_% d)(o)é £i (2 '5) 9/g(3 6)
t=1 Ve L3 J, (9 1)/

(1)

Upon the (absolute) continuity of the derivatives X [2-) for 1< kg q-1
one can let :

Z [Z'( ‘f: ) é'{(’é’)x (2)d%s

Chal.

vt’w i 0; 'éd/af’

where the (q 1) coefficients b’ are uniquely determined in terms of /(i

and ?; It is convenient to eXpress this functional dependence in terms of

the d1scont1nu1t1es of ﬂf({)and of its first (q - 1) derivatives at the
“initial" point f; , given by :

Swf(k)'?f (‘ (>(0¢) i U} 0$k$9-1 (3.8)

J* K+t ("k)'

(3.7)

Repeated 1ntegrat1ons by parts lead to :

éw(t)x (z)de = ’ZC-*) 5" (QCO) X H?(C)

K=p0

so that, by comparison with the first of equations (3.7) :

<= -k-14
(")Kg’b'(n)-.- Z Ay ‘Z'? 0£Ke9-2 (9

(q-k-1)!

(9-9
& =




T

The last of these equations is identically satisfied, upon equation (3.8)

and the others yield the required (q - 1) equations needed to determine ) ir
terms of K; and Zﬁ . Equations (3.7) and (3.9) affords the required tran;tﬁr~
mation for the first term on the right hand side of eq. (3.6). The transforma-
tion of the second term hinges on the identity :

(%, "'5)1‘1‘-‘ ¢ 0 (’6"3'),, + (’q—%)q'i

Let, on account of eq. (3.5) :

{3.10)

o A0 S .
o .=(1) Z A % £t £9-% (3.11)

Since :

9

(3.12)

The term h1q;does not contribute to the integral appearing in equation (3.6)

and one may thus let : :
- ’ 3

Cihal ae L
s I e
=t (go1)] i< (81




Substitution of equations (3.13), (3.7) into equation (3.6) leads finally

to =

ix-x(z. c<q,dxn, ;s yzell'le)
g =£0" 2 Ll s ple)ita)

Comparison between eqs. (3.14) and (3.4) shows , on account ofteq. (3.12),

that (9)(r~) (,b (3q ’) Z ,< (@ ’6") ac,;.)
3(’:) (Qq )o(z)+'b’('z) 72 145 ¢

=0 '
where FL is an arbitrary constant. J

(3)

The expression (3. 15) for § contains (n + g) coefficient (n coefficients /ﬂ'

(3.14)

(2.15)

and q coefficients (5q,- ). The following lemma shows that, on account
also of equation (3.5), only (n) of them are arbitrary.

Lemma 69)

"The function § CE) and its first (q - 2) derivatives are continuous on C"

Proof

S T T 9 -1

Given the properties of polynomials and of the functions (€ - 2?‘ e the

statement of the lemma needs to be proven only at the point Po.

In the interval E'G = Ol '&'z J eq. (3.15) reduces to : ‘

G' [z-) L:) K ?; F? f(z-)ﬂf(t) 'Z’é[ 2-1] (3.16)
G-0!
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In the interval [’C’m ,1[ /@"Z“) = (z-gb-) for any i so that :
(‘” (3) = B + ( 4) oAy +¥(2) ; T €[%, 1] @17
since for ('5 2’) = (’G e ) upon eqs. (3.10) and the second of eqs.

{3 13F ¢

'-' '7‘

S Al S Hepatey’ o, - pl2)
‘ ie ! (o]")i d-‘ al
From eqs. (3.16) and (3.17) it follows that :
(a<k)  (q+w) (12 () (x) 9
fo ¢ [07]° 6’(1) §v -p (o)= 5 +(~')°(q,.,<
K 6[0/‘7'2:]
since, upon the second of eqs. (3.13) (o): 0 and

P (o) = 0

Hence, upon equations (3.9) and (3.11)

P o)k efog

and the proposition is proved.

The(q - 1) conditions :

e e o (o £k=9-2)
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yield the (q - 1) equations which, together with equation (3.5), make it
possible to eliminate q coefficients (4K E%'- ) out of the (n + q) upon
which G‘ (’() depends. d

@)
The (g - 1) - th derivative of 6 is constant in each open intervatJQa}’gi,JE
1‘: < i <n). Its discontinuity at the points of coordinate 'tl' is equal to ,((.

The closed interpolating spline G (g ) is obtained by integrating equa-
tion (3.15) q times. The corresponding (q) arbitrary constants are determined
by imposing the continuity of 6 and of its first (q - 1) derivatives at 6
The function thus obtained will contain (n) arbitrary constants which are
determined (uniquely, upon theorem 5) from the (n) conditions G('E;) = "C;,.

Existence, uniqueness and main characterization of the closed spline-functions
have thus been proved.

In the next paragraph the additional properties of these classes of functions,
as derived from the general theory outlined in paragraph (2), will be pre-
sented. To facilitate a more wide spread comprehension abstract space nota-
tion will be abandoned. To give a complete panorama, the initial interpolating
problem and its solution will also be reformulated in standard notation.

4 - The Closed spline functions - Definition, characterization and properties

Given a sufficiently smooth closed contour C and (n) arbitrary points F:
on it, let '3"‘ (1 < 1< m.) be their curvilinear coordinates (see
figure) measured from an arbitrary P P

i ] . ; 1 2

initial point Po and normalized with

respect to the length of C.

o

R TR v
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Define the (n) open intervals ]%‘,’Iz—‘-ﬂc

0=0C,¢<%,< --~-<Tm<Z‘m“=i
and prescribe (n) values ‘z'_' with
o

The closed interpolating spline function 6"(2‘) of degree (q) corresponding
to (ZLI'Z" ) (4cism ) is defined as the unique element of H’(C) such

that : J[cr(?)_]z"g: ;’:*_‘I’:’ J[fl';):{z;tz
o gfe W) ) flec)= v 542 <n]

In order that G € H?(C) be the closed interpolating spline-function
corresponding to ( 21-/ 'Li ) it is necessary and sufficient that :

a) @ be a polynomial of degree (2q - 1) in each open interva]]Z‘t'/ ?tut
(’t.: o j. %MO‘:“)
b) " be continuous, on C, together with its first 2(q - 1) derivatives; thus,
in particular :

) =6 er) ;5 vrelo%-2] v,

c) ﬁ' be such that

o (3;)=", Vielt,m]
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The set of functions 4 6“ satisfying the first two conditions constitute

a subspace 5 (the space of closed spline functions corresponding to 2:
of dimension n.

For any element 465 (cfr. theorem 2) :

JAM)(z) f(”(z)da-—o
V46T, §4eH0) [ flr)-o s v efur)f

A base of S is given by (n) /S‘-'A such that /3((1}'): S«. and it is :
" 7
A= 2 ’(l../-l..,
t=1
The following extremal properties hold (cfr. theorem 4) :

Given (n) arbitrary but fixed Z": , if € is the unique element of S such
thatG'( Z; ) =¥, then :

( 2 (9 (‘7) 2
A) Jc&cq)(%)_ f 723)_]%;4?? c[_-@(%)-f(z)]o(g

and any other element 5& S having this property differs from G by a
constant :

B) for any 4(:5:
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(9) ¢
J[crh%'e) 4 ('g) zéle f[f (’r) 1 (t)]alz

and G is the unique element of :[5 having this property.

1
An element 4 € H {C) belongs to the space S of the closed spline-functions
corresponding to 2' iff 1t is representable as :

: 2g=!
4(%)= § F‘f’ - 2( ) 4i (z- %),
T.—o . = (Zq i)l
where the (n) coeff1c1ents K and the (2q) coefficient F’J satisfy the follo-
wing 2q equations :

% hivo

b ,,L .j-4
(x) z' i[(_ e 2«” ]:0
84 =
K)' (= : (Zq-» l)'(rk)'

QK*L 3’ <K
0< k< 23—2/

where :

(x) :
5 o e 3 S
For any function fé Hq(C) it is :

1 (z)f?(%')dz- Z'(«'\f(?t)

The (n) coefficients (,{ ) represent the values of the discontinuity of the
(2 9 - 1)-th derivative of s at the points of coordinate 2"
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When the following (n) equations :
M. _{L.‘,/ﬂ/) |
4(%'6)'%4 /1 J

are added to eqs. (4-1), the resulting system of (n + 2q) equations, linear
in K“and (l , admits an unique solution.

d

It may be instructive to compare the closed-spline functions considered herein
with the classical spline defined over the interval [a, bJ = [0,1_] and corre-
sponding to the partition :

PR S P TS

In the classical spline-functions the coefficients §. are identically zero for

‘?5 &S Zq—i and the following (g) relations ﬂo]d i i

Ras
2 K\.?Ck._.o o_(l(é‘i-‘i

t=t

()
Sﬂ(K) . ’30‘)(%/:) -4 ('E")

Upon letting :

one deduces from equations ( ) and ( ) that :
g -1 _ b q-{,’—: -~ 2?-)4 d.'k
84" * [(.') O it
T )
e 404 0N g4
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so that, upon noticing that : ;

- () : . < s -
3(")(%4):’5“(0#% "E‘—‘ L
ix ()

one finds that :

/S(K)(Z.M* ):d(")(%i_): o 7 < K S-Z?—z

<§ ‘d(“) 7& 0 O£k e “3' J ;

- ('(
with the 5»3 )uniquely determined for 0 < k.‘q-’!.Thus one recovers that,
as said in the introduction if one simply takes ’G;:'ZM and imposes 4('&,):
’Li il P 4(’3“") the first (q - 1) derivatives of s ( & ) are discon-
tinuous at 1;: @;'and the other derivatives, up to the order 2q - 2, vanish

identically.

- CONCLUDING REMARKS

As with the classical spline-functions, other classes of closed-spline functions

can be introduced by making different assumptions as to the operator A. Thus,
for instance, one could construct Hermitian closed-splines [by imposing,

as interpolating constraints at the points ¢ , also the values of the first
derivative of the function ¢ ¢ Rﬁ Lc)] mixed c1osgd-sp1ines constraints
equal to linear combinations of values for'ﬁ and '£ , Fourier closed-splined,
and so on. Furthermore, one may construct similar classes of interpolating

and approximating "closed-splines (cfr. [1] ¥

These further developments will be presented in future reports.

- R, -m — '
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